Search results
Results From The WOW.Com Content Network
As can be seen from Fig. 1, these problems involve solving the triangle NAB given one angle, α 1 for the direct problem and λ 12 = λ 2 − λ 1 for the inverse problem, and its two adjacent sides. For a sphere the solutions to these problems are simple exercises in spherical trigonometry , whose solution is given by formulas for solving a ...
The sphere packing problem is the three-dimensional version of a class of ball-packing problems in arbitrary dimensions. In two dimensions, the equivalent problem is packing circles on a plane. In one dimension it is packing line segments into a linear universe. [10]
For this reason, the expression for m in terms of β and its inverse given above play a key role in the solution of the geodesic problem with m replaced by s, the distance along the geodesic, and β replaced by σ, the arc length on the auxiliary sphere. [22] [30] The requisite series extended to sixth order are given by Charles Karney, [31] Eqs.
The octant of a sphere is a spherical triangle with three right angles.. Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions.
The center of the osculating sphere is offset from the center of the ellipsoid, but is at the center of curvature for the given point on the ellipsoid surface. This concept aids the interpretation of terrestrial and planetary radio occultation refraction measurements and in some navigation and surveillance applications. [15] [16]
The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics.The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem (see Dirichlet boundary conditions or Neumann boundary conditions).
Pseudo-range multilateration, often simply multilateration (MLAT) when in context, is a technique for determining the position of an unknown point, such as a vehicle, based on measurement of biased times of flight (TOFs) of energy waves traveling between the vehicle and multiple stations at known locations.
In geometry, the Tammes problem is a problem in packing a given number of points on the surface of a sphere such that the minimum distance between points is maximized. It is named after the Dutch botanist Pieter Merkus Lambertus Tammes (the nephew of pioneering botanist Jantina Tammes ) who posed the problem in his 1930 doctoral dissertation on ...