Search results
Results From The WOW.Com Content Network
An a × b rectangle can be packed with 1 × n strips if and only if n divides a or n divides b. [15] [16] de Bruijn's theorem: A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p, q, r (i.e., the box is a multiple of the brick.) [15]
A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.
Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities; List of volume formulas – Quantity of three-dimensional space
Some SI units of volume to scale and approximate corresponding mass of water. To ease calculations, a unit of volume is equal to the volume occupied by a unit cube (with a side length of one). Because the volume occupies three dimensions, if the metre (m) is chosen as a unit of length, the corresponding unit of volume is the cubic metre (m 3).
A right rectangular prism (with a rectangular base) is also called a cuboid, or informally a rectangular box. A right rectangular prism has Schläfli symbol { }×{ }×{ }. A right square prism (with a square base) is also called a square cuboid, or informally a square box. Note: some texts may apply the term rectangular prism or square prism to ...
25 Geometry and other areas of mathematics. 26 Glyphs and symbols. 27 Table of all the Shapes. ... Rectangle. square (regular quadrilateral) Tangential quadrilateral;
De Bruijn's theorem states that, if a harmonic brick is packed into a box, then the box must be a multiple of the brick. For instance, the three-dimensional harmonic brick with side lengths 1, 2, and 6 can only be packed into boxes in which one of the three sides is a multiple of six and one of the remaining two sides is even.
Rectangle packing is a packing problem where the objective is to determine whether a given set of small rectangles can be placed inside a given large polygon, such that no two small rectangles overlap. Several variants of this problem have been studied.