Ad
related to: second countable space is separable youtube tv
Search results
Results From The WOW.Com Content Network
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base.More explicitly, a topological space is second-countable if there exists some countable collection = {} = of open subsets of such that any open subset of can be written as a union of elements of some subfamily of .
Conversely, a metrizable space is separable if and only if it is second countable, which is the case if and only if it is Lindelöf. To further compare these two properties: An arbitrary subspace of a second-countable space is second countable; subspaces of separable spaces need not be separable (see below).
sequential space: a set is open if every sequence convergent to a point in the set is eventually in the set; first-countable space: every point has a countable neighbourhood basis (local base) second-countable space: the topology has a countable base; separable space: there exists a countable dense subset
Every Polish space is second countable (by virtue of being separable and metrizable). [1]A subspace Q of a Polish space P is Polish (under the induced topology) if and only if Q is the intersection of a sequence of open subsets of P (i. e., Q is a G δ-set).
Lindelöf space: every open cover has a countable subcover; σ-compact space: there exists a countable cover by compact spaces; Relations: Every first countable space is sequential. Every second-countable space is first-countable, separable, and Lindelöf. Every σ-compact space is Lindelöf. A metric space is first-countable. For metric spaces ...
A Lindelöf space is compact if and only if it is countably compact. Every second-countable space is Lindelöf, [5] but not conversely. For example, there are many compact spaces that are not second-countable. A metric space is Lindelöf if and only if it is separable, and if and only if it is second-countable. [6] Every regular Lindelöf space ...
However, the converse is nearly true: a paracompact manifold is second-countable if and only if it has a countable number of connected components. In particular, a connected manifold is paracompact if and only if it is second-countable. Every second-countable manifold is separable and paracompact. Moreover, if a manifold is separable and ...
Every second-countable space is separable. A metric space is separable if and only if it is second-countable and if and only if it is Lindelöf. Clearly a MS is a space so if separable iff second countable; so should the second one not be In a Metric space the following are equivalent: -- space 2nd countable -- space separable -- space Lindelof