Ad
related to: systems of odes calculator math
Search results
Results From The WOW.Com Content Network
For an arbitrary system of ODEs, a set of solutions (), …, are said to be linearly-independent if: + … + = is satisfied only for = … = =.A second-order differential equation ¨ = (,, ˙) may be converted into a system of first order linear differential equations by defining = ˙, which gives us the first-order system:
(Extensive online material on ODE numerical analysis history, for English-language material on the history of ODE numerical analysis, see, for example, the paper books by Chabert and Goldstine quoted by him.) Pchelintsev, A.N. (2020). "An accurate numerical method and algorithm for constructing solutions of chaotic systems".
For a system of the form (,, ′) =, some sources also require that the Jacobian matrix (,,) be non-singular in order to call this an implicit ODE [system]; an implicit ODE system satisfying this Jacobian non-singularity condition can be transformed into an explicit ODE system. In the same sources, implicit ODE systems with a singular Jacobian ...
Frequently models of physical systems contain terms representing fast-decaying elements (i.e. with large negative exponential arguments). Even when these are not of interest in the overall solution, the instability they can induce means that an exceptionally small timestep would be required if the Euler method is used.
Explicit methods calculate the state of a system at a later time from the state of the system at the current time, while implicit methods find a solution by solving an equation involving both the current state of the system and the later one.
In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
In mathematics, a fundamental matrix of a system of n homogeneous linear ordinary differential equations ˙ = () is a matrix-valued function () whose columns are linearly independent solutions of the system. [1]