Search results
Results From The WOW.Com Content Network
In chemistry, the hydrogenation of carbon–nitrogen double bonds is the addition of the elements of dihydrogen (H 2) across a carbon–nitrogen double bond, forming amines or amine derivatives. [1] Although a variety of general methods have been developed for the enantioselective hydrogenation of ketones, [ 2 ] methods for the hydrogenation of ...
The majority of known chemical cycles on Venus involve its dense atmosphere and compounds of carbon and sulphur, the most significant being a strong carbon dioxide cycle. [3] The lack of a complete carbon cycle including a geochemical carbon cycle, for example, is thought to be a cause of its runaway greenhouse effect, due to the lack of a ...
This is known as carbon isotope discrimination and results in carbon-12 to carbon-13 ratios in the plant that are higher than in the free air. Measurement of this isotopic ratio is important in the evaluation of water use efficiency in plants, [32] [33] [34] and also in assessing the possible or likely sources of carbon in global carbon cycle ...
The carbon cycle was first described by Antoine Lavoisier and Joseph Priestley, and popularised by Humphry Davy. [5] The global carbon cycle is now usually divided into the following major reservoirs of carbon (also called carbon pools) interconnected by pathways of exchange: [6] Atmosphere; Terrestrial biosphere
The carbon cycle is a biogeochemical cycle that is important in maintaining life on Earth over a long time span. The cycle includes carbon sequestration and carbon sinks . [ 4 ] [ 5 ] Plate tectonics are needed for life over a long time span, and carbon-based life is important in the plate tectonics process. [ 6 ]
Carbon-carbon bond activation refers to the breaking of carbon-carbon bonds in organic molecules. This process is an important tool in organic synthesis , as it allows for the formation of new carbon-carbon bonds and the construction of complex organic molecules. [ 1 ]
Cyanamide can be regarded as a functional single carbon fragment which can react as an electrophile or nucleophile. The main reaction exhibited by cyanamide involves additions of compounds containing an acidic proton. Water, hydrogen sulfide, and hydrogen selenide react with cyanamide to give urea, thiourea, and selenourea, respectively:
The oxidative addition reaction of methyl iodide with (1) involves the formal insertion of the iridium(I) centre into the carbon-iodine bond, whereas step (3) to (4) is an example of migratory insertion of carbon monoxide into the iridium-carbon bond.