Search results
Results From The WOW.Com Content Network
Carbon-carbon bond activation refers to the breaking of carbon-carbon bonds in organic molecules. This process is an important tool in organic synthesis , as it allows for the formation of new carbon-carbon bonds and the construction of complex organic molecules. [ 1 ]
This is known as carbon isotope discrimination and results in carbon-12 to carbon-13 ratios in the plant that are higher than in the free air. Measurement of this isotopic ratio is important in the evaluation of water use efficiency in plants, [32] [33] [34] and also in assessing the possible or likely sources of carbon in global carbon cycle ...
Cyanamide can be regarded as a functional single carbon fragment which can react as an electrophile or nucleophile. The main reaction exhibited by cyanamide involves additions of compounds containing an acidic proton. Water, hydrogen sulfide, and hydrogen selenide react with cyanamide to give urea, thiourea, and selenourea, respectively:
Ocean mixed layer carbon, c m, is the only explicitly modelled ocean stock of carbon; though to estimate carbon cycle feedbacks the total ocean carbon is also calculated. [ 107 ] Current trends in climate change lead to higher ocean temperatures and acidity , thus modifying marine ecosystems. [ 108 ]
The mechanism for the Pd-catalyzed C-H activation reactions of 2-phenylpyridine involves a metallacycle intermediate. The intermediate is oxidized to form a Pd IV species, followed by reductive elimination to form the C-O bond and release the product. [18] Mechanism for Pd-catalyzed C-H activation
In chemistry, a catalytic cycle is a multistep reaction mechanism that involves a catalyst. [1] The catalytic cycle is the main method for describing the role of catalysts in biochemistry , organometallic chemistry , bioinorganic chemistry , materials science , etc.
Santos et al. [16] hypothesized that the translocation of cyclin B is regulated by a mechanism of positive feedback, similar to that which regulates the activation of the cyclin B-Cdk1 complex. They believed that the positive feedback loop involves the phosphorylation of the cyclin B and its translocation to the nucleus.
1. CO 2 is fixed to produce a four-carbon molecule (malate or aspartate). 2. The molecule exits the cell and enters the bundle sheath cells. 3. It is then broken down into CO 2 and pyruvate. CO 2 enters the Calvin cycle to produce carbohydrates. 4. Pyruvate reenters the mesophyll cell, where it is reused to produce malate or aspartate.