Search results
Results From The WOW.Com Content Network
Circular polarization can be created by sending linearly polarized light through a quarter-wave plate oriented at 45° to the linear polarization to create two components of the same amplitude with the required phase shift. The superposition of the original and phase-shifted components causes a rotating electric field vector, which is depicted ...
[note 1] The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon.
The probability for a photon to be in a particular polarization state depends on the fields as calculated by the classical Maxwell's equations. The polarization state of the photon is proportional to the field. The probability itself is quadratic in the fields and consequently is also quadratic in the quantum state of polarization.
These equations say respectively: a photon has zero rest mass; the photon energy is hν = hc|k| (k is the wave vector, c is speed of light); its electromagnetic momentum is ħk [ħ = h/(2π)]; the polarization μ = ±1 is the eigenvalue of the z-component of the photon spin.
The fraction that is reflected is described by the Fresnel equations, and depends on the incoming light's polarization and angle of incidence. The Fresnel equations predict that light with the p polarization ( electric field polarized in the same plane as the incident ray and the surface normal at the point of incidence) will not be reflected ...
The Stokes I, Q, U and V parameters. The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation.They were defined by George Gabriel Stokes in 1851, [1] [2] as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (I), (fractional) degree of ...
As a general rule, the engineering, quantum physics, and radio astronomy communities use the first convention, in which the wave is observed from the point of view of the source. [5] [7] [8] In many physics textbooks dealing with optics, the second convention is used, in which the light is observed from the point of view of the receiver. [7] [9]
When light strikes the interface between a medium with refractive index n 1 and a second medium with refractive index n 2, both reflection and refraction of the light may occur. The Fresnel equations give the ratio of the reflected wave's electric field to the incident wave's electric field, and the ratio of the transmitted wave's electric ...