Search results
Results From The WOW.Com Content Network
Pandas is built around data structures called Series and DataFrames. Data for these collections can be imported from various file formats such as comma-separated values, JSON, Parquet, SQL database tables or queries, and Microsoft Excel. [8] A Series is a 1-dimensional data structure built on top of NumPy's array.
Dataframe may refer to: A tabular data structure common to many data processing libraries: pandas (software) § DataFrames; The Dataframe API in Apache Spark; Data frames in the R programming language; Frame (networking)
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Wes McKinney is an American software developer and businessman. He is the creator and "Benevolent Dictator for Life" (BDFL) of the open-source pandas package for data analysis in the Python programming language, and has also authored three versions of the reference book Python for Data Analysis.
A matrix in which successive columns have a particular function applied to their entries. Alternating sign matrix: A square matrix with entries 0, 1 and −1 such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign. Anti-diagonal matrix
In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.
In computer science, array is a data type that represents a collection of elements (values or variables), each selected by one or more indices (identifying keys) that can be computed at run time during program execution. Such a collection is usually called an array variable or array value. [1]
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.