Search results
Results From The WOW.Com Content Network
The use of Model Based Condition Monitoring for predictive maintenance programs is becoming increasingly popular over time. This method involves spectral analysis on the motor's current and voltage signals and then compares the measured parameters to a known and learned model of the motor to diagnose various electrical and mechanical anomalies.
Model-based voltage and current systems (MBVI systems): This is a technique that makes use of the information available from the current and voltage signals across all three phases simultaneously. Model-based systems are able to identify many of the same phenomena also seen by more conventional techniques, covering electrical, mechanical, and ...
New model elements for representing Scorecards, k-Nearest Neighbors and Baseline Models. Simplification of multiple models. In PMML 4.1, the same element is used to represent model segmentation, ensemble, and chaining. Overall definition of field scope and field names.
Unlike other BI technologies, predictive analytics is forward-looking, using past events to anticipate the future. [3] Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to ...
General model-based testing setting. Model-based testing is an application of model-based design for designing and optionally also executing artifacts to perform software testing or system testing. Models can be used to represent the desired behavior of a system under test (SUT), or to represent testing strategies and a test environment. The ...
An intelligent maintenance system is a system that uses data analysis and decision support tools to predict and prevent the potential failure of machines. The recent advancement in information technology, computers, and electronics have facilitated the design and implementation of such systems.
Data-driven prognostics usually use pattern recognition and machine learning techniques to detect changes in system states. [3] The classical data-driven methods for nonlinear system prediction include the use of stochastic models such as the autoregressive (AR) model, the threshold AR model, the bilinear model, the projection pursuit, the multivariate adaptive regression splines, and the ...
Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .