When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]

  3. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  4. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    If the coefficients a i of a random polynomial are independently and identically distributed with a mean of zero, most complex roots are on the unit circle or close to it. In particular, the real roots are mostly located near ±1, and, moreover, their expected number is, for a large degree, less than the natural logarithm of the degree.

  5. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    The graph crosses the x-axis at roots of odd multiplicity and does not cross it at roots of even multiplicity. A non-zero polynomial function is everywhere non-negative if and only if all its roots have even multiplicity and there exists an x 0 {\displaystyle x_{0}} such that f ( x 0 ) > 0 {\displaystyle f(x_{0})>0} .

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The method will usually converge, provided this initial guess is close enough to the unknown zero, and that f ′ (x 0) ≠ 0. Furthermore, for a zero of multiplicity 1, the convergence is at least quadratic (see Rate of convergence) in a neighbourhood of the zero, which intuitively means that the number of correct digits roughly doubles in ...

  7. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Let () be the number of strictly positive roots (counting multiplicity). With these, we can formally state Descartes' rule as follows: Theorem — The number of strictly positive roots (counting multiplicity) of f {\displaystyle f} is equal to the number of sign changes in the coefficients of f {\displaystyle f} , minus a nonnegative even number.

  8. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is The general form of a quartic equation is Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points .

  9. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed. For example, a tangent to a curve is a line that cuts the curve at a point that splits in several points if the line is slightly moved.