When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dilation (metric space) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(metric_space)

    In Euclidean space, such a dilation is a similarity of the space. [2] Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point [3] that is called the center of dilation. [4] Some congruences have fixed points and others do not. [5]

  3. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    In Euclidean geometry homotheties are the similarities that fix a point and either preserve (if >) or reverse (if <) the direction of all vectors. Together with the translations, all homotheties of an affine (or Euclidean) space form a group, the group of dilations or homothety-translations.

  4. Dilation - Wikipedia

    en.wikipedia.org/wiki/Dilation

    Dilation (operator theory), a dilation of an operator on a Hilbert space; Dilation (morphology), an operation in mathematical morphology; Scaling (geometry), including: Homogeneous dilation , the scalar multiplication operator on a vector space or affine space; Inhomogeneous dilation, where scale factors may differ in different directions

  5. Mathematical morphology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_morphology

    A shape (in blue) and its morphological dilation (in green) and erosion (in yellow) by a diamond-shaped structuring element. Mathematical morphology (MM) is a theory and technique for the analysis and processing of geometrical structures, based on set theory, lattice theory, topology, and random functions.

  6. Homothetic center - Wikipedia

    en.wikipedia.org/wiki/Homothetic_center

    Figure 1: The point O is an external homothetic center for the two triangles. The size of each figure is proportional to its distance from the homothetic center. In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.

  7. Dilation (morphology) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(morphology)

    Dilation (usually represented by ⊕) is one of the basic operations in mathematical morphology. Originally developed for binary images, it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Laguerre transformations - Wikipedia

    en.wikipedia.org/wiki/Laguerre_transformations

    An axial dilation is depicted in Figure 1, in which two circles of opposite orientations undergo the same axial dilation. On lines, an axial dilation by t {\displaystyle t} units maps any line z {\displaystyle z} to a line z ′ {\displaystyle z'} such that z {\displaystyle z} and z ′ {\displaystyle z'} are parallel, and the perpendicular ...