Search results
Results From The WOW.Com Content Network
Drawing of the statocyst system Statocysts (ss) and statolith (sl) inside the head of sea snail Gigantopelta chessoia. The statocyst is a balance sensory receptor present in some aquatic invertebrates, including bivalves, [1] cnidarians, [2] ctenophorans, [3] echinoderms, [4] cephalopods, [5] [6] crustaceans, [7] and gastropods, [8] A similar structure is also found in Xenoturbella. [9]
The calcium carbonate that the otolith is composed of is primarily derived from the water. As the otolith grows, new calcium carbonate crystals form. As with any crystal structure, lattice vacancies will exist during crystal formation allowing trace elements from the water to bind with the otolith.
Otoconia are crystals of calcium carbonate and make the otolithic membrane heavier than the structures and fluids surrounding it. [1] The otoconia are composite crystallites that overlie the macular sensory epithelium of the gravity receptors of most vertebrates and are required for optimal stimulus input of linear acceleration and gravity. [3]
The utricle and saccule are part of the balancing system (membranous labyrinth) in the vestibule of the bony labyrinth (small oval chamber). [1] They use small stones and a viscous fluid to stimulate hair cells to detect motion and orientation. The utricle detects linear accelerations and head-tilts in the horizontal plane.
The 2 by 3 mm patch of hair cells and supporting cells are called a macula. Each hair cell of a macula has 40 to 70 stereocilia and one true cilium called a kinocilium. The stereocilia are oriented by the striola, a curved ridge that runs through the middle of the macula; in the saccule they are oriented away from the striola [ 2 ] The tips of ...
The primary role of the vestibular system is to maintain head and eye coordination, upright posture and balance, and conscious realization of spatial orientation and motion. The vestibular system is able to respond correctly by recording sensory information from hairs cells in the labyrinth of the inner ear.
The perception of head movement involves the body sensing linear acceleration or the force of gravity through the otoliths, and angular acceleration through the semicircular canals. The reflex uses a combination of visual system inputs, vestibular inputs, and somatosensory inputs to make postural adjustments when the body becomes displaced from ...
Balance skill development in children Balance training using medicine balls. The sense of balance or equilibrioception is the perception of balance and spatial orientation. [1] It helps prevent humans and nonhuman animals from falling over when standing or moving.