When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zero divisor - Wikipedia

    en.wikipedia.org/wiki/Zero_divisor

    An element that is a left or a right zero divisor is simply called a zero divisor. [2] An element a that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero x such that ax = 0 may be different from the nonzero y such that ya = 0). If the ring is commutative, then the left and right zero divisors are the same.

  3. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    In mathematics, division by zero, division where the divisor (denominator) is zero, is a unique and problematic special case. Using fraction notation, the general example can be written as a 0 {\displaystyle {\tfrac {a}{0}}} , where a {\displaystyle a} is the dividend (numerator).

  4. Zero-divisor graph - Wikipedia

    en.wikipedia.org/wiki/Zero-divisor_graph

    The zero-divisor graph of , the only possible zero-divisor graph that is a tree but not a star. In mathematics, and more specifically in combinatorial commutative algebra, a zero-divisor graph is an undirected graph representing the zero divisors of a commutative ring.

  5. Divisibility (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Divisibility_(ring_theory)

    If one interprets the definition of divisor literally, every a is a divisor of 0, since one can take x = 0. Because of this, it is traditional to abuse terminology by making an exception for zero divisors: one calls an element a in a commutative ring a zero divisor if there exists a nonzero x such that ax = 0 .

  6. Domain (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Domain_(ring_theory)

    Zero divisors have a topological interpretation, at least in the case of commutative rings: a ring R is an integral domain if and only if it is reduced and its spectrum Spec R is an irreducible topological space. The first property is often considered to encode some infinitesimal information, whereas the second one is more geometric.

  7. Nilpotent - Wikipedia

    en.wikipedia.org/wiki/Nilpotent

    All nilpotent elements are zero divisors. An n × n {\displaystyle n\times n} matrix A {\displaystyle A} with entries from a field is nilpotent if and only if its characteristic polynomial is t n {\displaystyle t^{n}} .

  8. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. [1]

  9. Reduced ring - Wikipedia

    en.wikipedia.org/wiki/Reduced_ring

    More generally, every integral domain is a reduced ring since a nilpotent element is a fortiori a zero-divisor. On the other hand, not every reduced ring is an integral domain; for example, the ring Z[x, y]/(xy) contains x + (xy) and y + (xy) as zero-divisors, but no non-zero nilpotent elements.