Search results
Results From The WOW.Com Content Network
R-trees do not guarantee good worst-case performance, but generally perform well with real-world data. [7] While more of theoretical interest, the (bulk-loaded) Priority R-tree variant of the R-tree is worst-case optimal, [8] but due to the increased complexity, has not received much attention in practical applications so far.
In data processing R*-trees are a variant of R-trees used for indexing spatial information. R*-trees have slightly higher construction cost than standard R-trees, as the data may need to be reinserted; but the resulting tree will usually have a better query performance. Like the standard R-tree, it can store both point and spatial data.
The performance of R-trees depends on the quality of the algorithm that clusters the data rectangles on a node. Hilbert R-trees use space-filling curves, and specifically the Hilbert curve, to impose a linear ordering on the data rectangles. There are two types of Hilbert R-trees: one for static databases, and one for dynamic databases. In both ...
An R+ tree is a method for looking up data using a location, often (x, y) coordinates, and often for locations on the surface of the Earth.Searching on one number is a solved problem; searching on two or more, and asking for locations that are nearby in both x and y directions, requires craftier algorithms.
The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.
The function join (,,) considers rebalancing the tree, and thus depends on the input balancing scheme. If the two trees are balanced, join simply creates a new node with left subtree t 1, root k and right subtree t 2.
Trees can be used to represent and manipulate various mathematical structures, such as: Paths through an arbitrary node-and-edge graph (including multigraphs), by making multiple nodes in the tree for each graph node used in multiple paths; Any mathematical hierarchy; Tree structures are often used for mapping the relationships between things ...
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...