When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bounded operator - Wikipedia

    en.wikipedia.org/wiki/Bounded_operator

    A linear operator : between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then () is bounded in . A subset of a TVS is called bounded (or more precisely, von Neumann bounded ) if every neighborhood of the origin absorbs it.

  3. Unitary operator - Wikipedia

    en.wikipedia.org/wiki/Unitary_operator

    Thus a unitary operator is a bounded linear operator that is both an isometry and a coisometry, [1] or, equivalently, a surjective isometry. [2] An equivalent definition is the following: Definition 2. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold: U is surjective, and

  4. Approximation property - Wikipedia

    en.wikipedia.org/wiki/Approximation_property

    A Banach space is said to have bounded approximation property (BAP), if it has the -AP for some . A Banach space is said to have metric approximation property ( MAP ), if it is 1-AP. A Banach space is said to have compact approximation property ( CAP ), if in the definition of AP an operator of finite rank is replaced with a compact operator.

  5. Open mapping theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Open_mapping_theorem...

    In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

  6. Strictly singular operator - Wikipedia

    en.wikipedia.org/wiki/Strictly_singular_operator

    For example, if X is a Banach space and T is a strictly singular operator in B(X) then its spectrum satisfies the following properties: (i) the cardinality of () is at most countable; (ii) () (except possibly in the trivial case where X is finite-dimensional); (iii) zero is the only possible limit point of (); and (iv) every nonzero () is an ...

  7. Closed range theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_range_theorem

    Since the graph of T is closed, the proof reduces to the case when : is a bounded operator between Banach spaces. Now, factors as / ⁡ ⁡.Dually, ′ is ′ (⁡) ′ ′ (/ ⁡) ′ ′.

  8. Contraction (operator theory) - Wikipedia

    en.wikipedia.org/wiki/Contraction_(operator_theory)

    In operator theory, a bounded operator T: X → Y between normed vector spaces X and Y is said to be a contraction if its operator norm ||T || ≤ 1. This notion is a special case of the concept of a contraction mapping, but every bounded operator becomes a contraction after suitable scaling. The analysis of contractions provides insight into ...

  9. Hilbert–Schmidt operator - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_operator

    An important class of examples is provided by Hilbert–Schmidt integral operators. Every bounded operator with a finite-dimensional range (these are called operators of finite rank) is a Hilbert–Schmidt operator. The identity operator on a Hilbert space is a Hilbert–Schmidt operator if and only if the Hilbert space is finite-dimensional.