When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin ′ ( a ) = cos( a ), meaning that the rate of change of sin( x ) at a particular angle x = a is given ...

  3. Sec-1 - Wikipedia

    en.wikipedia.org/wiki/Sec-1

    Sec-1, SEC-1, sec-1, or sec1 may refer to: sec x1 = sec( x )−1 = exsec( x ) or exsecant of x , an old trigonometric function sec1 y = sec1 ( y ) , sometimes interpreted as arcsec( y ) or arcsecant of y , the compositional inverse of the trigonometric function secant (see below for ambiguity)

  4. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    [1] [10] Another precarious convention used by a small number of authors is to use an uppercase first letter, along with a “ −1 ” superscript: Sin −1 (x), Cos −1 (x), Tan −1 (x), etc. [11] Although it is intended to avoid confusion with the reciprocal, which should be represented by sin −1 (x), cos −1 (x), etc., or, better, by ...

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  6. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction—each of which may lead to a simplified ...

  7. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  8. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    For arcoth, the argument of the logarithm is in (−∞, 0], if and only if z belongs to the real interval [−1, 1]. Therefore, these formulas define convenient principal values, for which the branch cuts are (−∞, −1] and [1, ∞) for the inverse hyperbolic tangent, and [−1, 1] for the inverse hyperbolic cotangent.

  9. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    In the integral , we may use = ⁡, = ⁡, = ⁡. Then, = ⁡ ⁡ = ⁡ (⁡) = ⁡ ⁡ = = + = ⁡ +. The above step requires that > and ⁡ > We can choose to be the principal root of , and impose the restriction / < < / by using the inverse sine function.