When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The harmonic oscillator model is very important in physics, because any mass subject to a force in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are exploited in many manmade devices, such as clocks and radio circuits. They are the source of virtually all sinusoidal ...

  3. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    In mechanics and physics, simple harmonic motion (sometimes abbreviated as SHM) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position.

  4. Van der Pol oscillator - Wikipedia

    en.wikipedia.org/wiki/Van_der_Pol_oscillator

    This is a form of the simple harmonic oscillator, and there is always conservation of energy. When μ > 0 , all initial conditions converge to a globally unique limit cycle. Near the origin x = d x d t = 0 , {\displaystyle x={\tfrac {dx}{dt}}=0,} the system is unstable, and far from the origin, the system is damped.

  5. Method of averaging - Wikipedia

    en.wikipedia.org/wiki/Method_of_averaging

    Figure 2: A simple harmonic oscillator with small periodic damping term given by ¨ + ⁡ ˙ + =, =, ˙ =; =.The numerical simulation of the original equation (blue solid line) is compared with averaging system (orange dashed line) and the crude averaged system (green dash-dotted line). The left plot displays the solution evolved in time and ...

  6. Coupling (physics) - Wikipedia

    en.wikipedia.org/wiki/Coupling_(physics)

    These equations represent the simple harmonic motion of the pendulum with an added coupling factor of the spring. [1] This behavior is also seen in certain molecules (such as CO 2 and H 2 O), wherein two of the atoms will vibrate around a central one in a similar manner. [1]

  7. Natural frequency - Wikipedia

    en.wikipedia.org/wiki/Natural_frequency

    Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.

  8. Classical probability density - Wikipedia

    en.wikipedia.org/wiki/Classical_probability_density

    Starting with the example used in the derivation above, the simple harmonic oscillator has the potential energy function = =, where k is the spring constant of the oscillator and ω = 2π/T is the natural angular frequency of the oscillator.

  9. Wilberforce pendulum - Wikipedia

    en.wikipedia.org/wiki/Wilberforce_pendulum

    A Wilberforce pendulum can be designed by approximately equating the frequency of harmonic oscillations of the spring-mass oscillator f T, which is dependent on the spring constant k of the spring and the mass m of the system, and the frequency of the rotating oscillator f R, which is dependent on the moment of inertia I and the torsional ...