Search results
Results From The WOW.Com Content Network
In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...
With parallel lines, they are congruent. Alternate angles are the four pairs of angles that: have distinct vertex points, lie on opposite sides of the transversal and; both angles are interior or both angles are exterior. If the two angles of one pair are congruent (equal in measure), then the angles of each of the other pairs are also congruent.
The high school exterior angle theorem (HSEAT) says that the size of an exterior angle at a vertex of a triangle equals the sum of the sizes of the interior angles at the other two vertices of the triangle (remote interior angles). So, in the picture, the size of angle ACD equals the size of angle ABC plus the size of angle CAB.
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. Euclid's parallel postulate states: If a line segment intersects two straight lines forming two interior angles on the same side that sum to less than two right angles , then the two lines, if extended indefinitely ...
The orange and green quadrilaterals are congruent; the blue one is not congruent to them. Congruence between the orange and green ones is established in that side BC corresponds to (in this case of congruence, equals in length) JK, CD corresponds to KL, DA corresponds to LI, and AB corresponds to IJ, while angle ∠C corresponds to (equals) angle ∠K, ∠D corresponds to ∠L, ∠A ...
The sum of the angles is the same for every triangle. There exists a pair of similar, but not congruent, triangles. Every triangle can be circumscribed. If three angles of a quadrilateral are right angles, then the fourth angle is also a right angle. There exists a quadrilateral in which all angles are right angles, that is, a rectangle.
Equivalently, a convex quadrilateral is cyclic if and only if each exterior angle is equal to the opposite interior angle. In 1836 Duncan Gregory generalized this result as follows: Given any convex cyclic 2n-gon, then the two sums of alternate interior angles are each equal to (n-1). [4]
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...