Ads
related to: define surjective function with example worksheet free
Search results
Results From The WOW.Com Content Network
The composition of surjective functions is always surjective: If f and g are both surjective, and the codomain of g is equal to the domain of f, then f o g is surjective. Conversely, if f o g is surjective, then f is surjective (but g, the function applied first, need not be).
A function is surjective or onto if each element of the codomain is mapped to by at least one element of the domain. In other words, each element of the codomain has a non-empty preimage. Equivalently, a function is surjective if its image is equal to its codomain. A surjective function is a surjection. [1] The formal definition is the following.
Nowhere continuous function: is not continuous at any point of its domain; for example, the Dirichlet function. Homeomorphism: is a bijective function that is also continuous, and whose inverse is continuous. Open function: maps open sets to open sets. Closed function: maps closed sets to closed sets.
A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not. A surjection [d] A function that is surjective. For example, the green relation in the diagram is a surjection, but the red, blue and black ones are not. A bijection [d] A function that is injective and surjective.
For example, as a function from the integers to the integers, the doubling function () = is not surjective because only the even integers are part of the image. However, a new function f ~ ( n ) = 2 n {\displaystyle {\tilde {f}}(n)=2n} whose domain is the integers and whose codomain is the even integers is surjective.
Examples [ edit ] In the category of sets , every monomorphism ( injective function ) with a non-empty domain is a section, and every epimorphism ( surjective function ) is a retraction; the latter statement is equivalent to the axiom of choice .
A state transition function is a surjective function when every state has a predecessor (there can be no Garden of Eden). It is an injective function when no two states have the same successor. A surjunctive group is a group with the property that, when its elements are used as the cells of cellular automata, every injective transition function ...
A faithful functor need not be injective on objects or morphisms. That is, two objects X and X′ may map to the same object in D (which is why the range of a full and faithful functor is not necessarily isomorphic to C), and two morphisms f : X → Y and f′ : X′ → Y′ (with different domains/codomains) may map to the same morphism in D.