When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    However, today the classical equation of entropy, = can be explained, part by part, in modern terms describing how molecules are responsible for what is happening: Δ S {\displaystyle \Delta S} is the change in entropy of a system (some physical substance of interest) after some motional energy ("heat") has been transferred to it by fast-moving ...

  3. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    In more detail, Clausius explained his choice of "entropy" as a name as follows: [10] I prefer going to the ancient languages for the names of important scientific quantities, so that they may mean the same thing in all living tongues. I propose, therefore, to call S the entropy of a body, after the Greek

  4. Maxwell's thermodynamic surface - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_thermodynamic...

    Maxwell’s thermodynamic surface is an 1874 sculpture [1] made by Scottish physicist James Clerk Maxwell (1831–1879). This model provides a three-dimensional space of the various states of a fictitious substance with water-like properties. [2] This plot has coordinates volume (x), entropy (y), and energy (z).

  5. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.

  6. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    Thus, if entropy is associated with disorder and if the entropy of the universe is headed towards maximal entropy, then many are often puzzled as to the nature of the "ordering" process and operation of evolution in relation to Clausius' most famous version of the second law, which states that the universe is headed towards maximal "disorder".

  7. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...

  8. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    However, after sufficient time has passed, the system reaches a uniform color, a state much easier to describe and explain. Boltzmann formulated a simple relationship between entropy and the number of possible microstates of a system, which is denoted by the symbol Ω. The entropy S is proportional to the natural logarithm of this number:

  9. Maxwell's demon - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_demon

    Since the demon and the gas are interacting, we must consider the total entropy of the gas and the demon combined. The expenditure of energy by the demon will cause an increase in the entropy of the demon, which will be larger than the lowering of the entropy of the gas. In 1960, Rolf Landauer raised an exception to this argument.