Search results
Results From The WOW.Com Content Network
In statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables).
In probability theory, the joint probability distribution is the probability distribution of all possible pairs of outputs of two random variables that are defined on the same probability space. The joint distribution can just as well be considered for any given number of random variables.
In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function , then the characteristic function is the Fourier transform (with sign reversal) of the probability density function.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter.
Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails. Let the third random variable Z be equal to 1 if exactly one of those coin tosses resulted in "heads", and 0 otherwise (i.e., =). Then jointly the triple (X, Y, Z) has the following probability distribution:
The +2 in the name wald+2 can now be taken to mean that in the context of a two-by-two contingency table, which is a multinomial distribution with four possible events, then since we add 1/2 an observation to each of them, then this translates to an overall addition of 2 observations (due to the prior).
E[X * X] ≥ 0 for all random variables X; E[X + Y] = E[X] + E[Y] for all random variables X and Y; and; E[kX] = kE[X] if k is a constant. One may generalize this setup, allowing the algebra to be noncommutative. This leads to other areas of noncommutative probability such as quantum probability, random matrix theory, and free probability.