When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the ...

  3. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  4. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  5. Synthetic division - Wikipedia

    en.wikipedia.org/wiki/Synthetic_division

    Note that there is no term in , so the fourth column from the right contains a zero. In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule), but the ...

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The process of substituting remainders by formulae involving their predecessors can be continued until the original numbers a and b are reached: r 2 = r 0 − q 2 r 1 r 1 = b − q 1 r 0 r 0 = a − q 0 b. After all the remainders r 0, r 1, etc. have been substituted, the final equation expresses g as a linear sum of a and b, so that g = sa + tb.

  7. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    explicitly showing its relationship with Euclidean division. However, the b here need not be the remainder in the division of a by m. Rather, a ≡ b (mod m) asserts that a and b have the same remainder when divided by m. That is, a = p m + r, b = q m + r, where 0 ≤ r < m is the common remainder.

  8. The monkey and the coconuts - Wikipedia

    en.wikipedia.org/wiki/The_monkey_and_the_coconuts

    The monkey and the coconuts is the best known representative of a class of puzzle problems requiring integer solutions structured as recursive division or fractionating of some discretely divisible quantity, with or without remainders, and a final division into some number of equal parts, possibly with a remainder.

  9. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    Such an interminable division-by-zero algorithm is physically exhibited by some mechanical calculators. [4] In partitive division, the dividend is imagined to be split into parts, and the quotient is the resulting size of each part. For example, imagine ten cookies are to be divided among two friends.