When.com Web Search

  1. Ad

    related to: retained austenite visual chart

Search results

  1. Results From The WOW.Com Content Network
  2. Austenite - Wikipedia

    en.wikipedia.org/wiki/Austenite

    Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. [1] In plain-carbon steel , austenite exists above the critical eutectoid temperature of 1000 K (727 °C); other alloys of steel have different eutectoid temperatures.

  3. Austempering - Wikipedia

    en.wikipedia.org/wiki/Austempering

    The specific cooling rate that is necessary to avoid the formation of pearlite is a product of the chemistry of the austenite phase and thus the alloy being processed. The actual cooling rate is a product of both the quench severity, which is influenced by quench media, agitation, load (quenchant ratio, etc.), and the thickness and geometry of ...

  4. TRIP steel - Wikipedia

    en.wikipedia.org/wiki/TRIP_steel

    At lower carbon levels, the retained austenite begins to transform almost immediately upon deformation, increasing the work hardening rate and formability during the stamping process. At higher carbon contents, the retained austenite is more stable and begins to transform only at strain levels beyond those produced during forming.

  5. Metallography - Wikipedia

    en.wikipedia.org/wiki/Metallography

    For example, the amount of retained austenite in a hardened steel is best measured using XRD (ASTM E 975). If a particular phase can be chemically extracted from a bulk specimen, it can be identified using XRD based on the crystal structure and lattice dimensions.

  6. Martensite - Wikipedia

    en.wikipedia.org/wiki/Martensite

    For a eutectoid steel (0.76% C), between 6 and 10% of austenite, called retained austenite, will remain. The percentage of retained austenite increases from insignificant for less than 0.6% C steel, to 13% retained austenite at 0.95% C and 30–47% retained austenite for a 1.4% carbon steel. A very rapid quench is essential to create martensite.

  7. Maraging steel - Wikipedia

    en.wikipedia.org/wiki/Maraging_steel

    The manganese has an effect similar to nickel, i.e. it stabilizes the austenite phase. Hence, depending on their manganese content, Fe-Mn maraging steels can be fully martensitic after quenching them from the high temperature austenite phase or they can contain retained austenite. [ 7 ]

  8. Isothermal transformation diagram - Wikipedia

    en.wikipedia.org/wiki/Isothermal_transformation...

    Austenite is slightly undercooled when quenched below Eutectoid temperature. When given more time, stable microconstituents can form: ferrite and cementite. Coarse pearlite is produced when atoms diffuse rapidly after phases that form pearlite nucleate. This transformation is complete at the pearlite finish time (P f).

  9. Tempering (metallurgy) - Wikipedia

    en.wikipedia.org/wiki/Tempering_(metallurgy)

    In the second stage, occurring between 150 °C (302 °F) and 300 °C (572 °F), the retained austenite transforms into a form of lower-bainite containing ε-carbon rather than cementite (archaically referred to as "troostite"). [16] [17] The third stage occurs at 200 °C (392 °F) and higher. In the third stage, ε-carbon precipitates into ...