Search results
Results From The WOW.Com Content Network
The angle sum of a triangle is greater than 180° and less than 540°. The area of a triangle is proportional to the excess of its angle sum over 180°. Two triangles with the same angle sum are equal in area. There is an upper bound for the area of triangles.
The direct theorem was Proposition 22 in Book 3 of Euclid's Elements. [3] Equivalently, a convex quadrilateral is cyclic if and only if each exterior angle is equal to the opposite interior angle . In 1836 Duncan Gregory generalized this result as follows: Given any convex cyclic 2 n -gon, then the two sums of alternate interior angles are each ...
The angles of proper spherical triangles are (by convention) less than π, so that < + + < (Todhunter, [1] Art.22,32). In particular, the sum of the angles of a spherical triangle is strictly greater than the sum of the angles of a triangle defined on the Euclidean plane, which is always exactly π radians.
[6] A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8] A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite vertices. [9]
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
There are 7 subgroup dihedral symmetries: (Dih 12, Dih 6, Dih 3), and (Dih 8, Dih 4, Dih 2 Dih 1), and 8 cyclic group symmetries: (Z 24, Z 12, Z 6, Z 3), and (Z 8, Z 4, Z 2, Z 1). These 16 symmetries can be seen in 22 distinct symmetries on the icositetragon. John Conway labels these by a letter and group order. [2]
The widely accepted interpretation of, e.g. the Poggendorff and Hering illusions as manifestation of expansion of acute angles at line intersections, is an example of successful implementation of a "bottom-up," physiological explanation of a geometrical–optical illusion. Ponzo illusion in a purely schematic form and, below, with perspective clues
Any two pairs of angles are congruent, [4] which in Euclidean geometry implies that all three angles are congruent: [a] If ∠ BAC is equal in measure to ∠ B'A'C', and ∠ ABC is equal in measure to ∠ A'B'C', then this implies that ∠ ACB is equal in measure to ∠ A'C'B' and the triangles are similar.