Search results
Results From The WOW.Com Content Network
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements.
Stars fuse light elements to heavier ones in their cores, giving off energy in the process known as stellar nucleosynthesis. Nuclear fusion reactions create many of the lighter elements, up to and including iron and nickel in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ...
Although the baryon per photon ratio is important in determining element abundances, the precise value makes little difference to the overall picture. Without major changes to the Big Bang theory itself, BBN will result in mass abundances of about 75% of hydrogen-1, about 25% helium-4 , about 0.01% of deuterium and helium-3 , trace amounts (on ...
Fusion forces together atoms of very light, stable elements like isotopes of hydrogen, creating slightly heavier elements like helium and producing as much as four times as much energy, per unit ...
Nuclear fusion–fission hybrid (hybrid nuclear power) is a proposed means of generating power by use of a combination of nuclear fusion and fission processes. The concept dates to the 1950s, and was briefly advocated by Hans Bethe during the 1970s, but largely remained unexplored until a revival of interest in 2009, due to the delays in the ...
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
The upsides to fusion over fission have long been known to scientists. “Fusion could generate four times more energy per kilogram of fuel than fission (used in nuclear power plants) and nearly ...
The one benefit of using only deuterium is that unlike many other fusion candidates (especially tritium), Earth’s oceans and atmosphere contain a lot of the isotope, also known as heavy water ...