Search results
Results From The WOW.Com Content Network
The precise analysis of the performance of a disjoint-set forest is somewhat intricate. However, there is a much simpler analysis that proves that the amortized time for any m Find or Union operations on a disjoint-set forest containing n objects is O(m log * n), where log * denotes the iterated logarithm. [12] [13] [14] [15]
A graph with three components. In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting ...
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
A complete bipartite graph with m = 5 and n = 3 The Heawood graph is bipartite.. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in .
The basic form of the Bron–Kerbosch algorithm is a recursive backtracking algorithm that searches for all maximal cliques in a given graph G.More generally, given three disjoint sets of vertices R, P, and X, it finds the maximal cliques that include all of the vertices in R, some of the vertices in P, and none of the vertices in X.
In a connected graph, each cut-set determines a unique cut, and in some cases cuts are identified with their cut-sets rather than with their vertex partitions. In a flow network , an s–t cut is a cut that requires the source and the sink to be in different subsets, and its cut-set only consists of edges going from the source's side to the ...
Every set of non-overlapping shapes is an independent set in the intersection graph of the shapes. Therefore, the MDS problem is a special case of the maximum independent set (MIS) problem. Both problems are NP complete , but finding a MDS may be easier than finding a MIS in two respects:
The vertex-connectivity statement of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.