Search results
Results From The WOW.Com Content Network
The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...
The Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre [3] as the coefficients in the expansion of the Newtonian potential | ′ | = + ′ ′ = = ′ + (), where r and r′ are the lengths of the vectors x and x′ respectively and γ is the angle between those two vectors.
where the indices ℓ and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively. This equation has nonzero solutions that are nonsingular on [−1, 1] only if ℓ and m are integers with 0 ≤ m ≤ ℓ , or with trivially equivalent negative values.
where now the closed path C encircles the origin. In the equation for (,), is an implicit function of . As examples, we will find the generating functions for the Hermite polynomials and the Legendre polynomials. The Hermite polynomials are particularly easy: =
Legendre's formula can be used to prove Kummer's theorem. As one special case, it can be used to prove that if n is a positive integer then 4 divides ( 2 n n ) {\displaystyle {\binom {2n}{n}}} if and only if n is not a power of 2.
In mathematics, Legendre's equation is a Diophantine equation of the form: + + = The equation is named for Adrien-Marie Legendre who proved it in 1785 that it is solvable in integers x, y, z, not all zero, if and only if −bc, −ca and −ab are quadratic residues modulo a, b and c, respectively, where a, b, c are nonzero, square-free, pairwise relatively prime integers and also not all ...
The magic angle is a precisely defined angle, the value of which is approximately 54.7356°. The magic angle is a root of a second-order Legendre polynomial, P 2 (cos θ) = 0, and so any interaction which depends on this second-order Legendre polynomial vanishes at the magic angle.
In mathematics, Legendre moments are a type of image moment and are achieved by using the Legendre polynomial. Legendre moments are used in areas of image processing including: pattern and object recognition, image indexing, line fitting, feature extraction, edge detection, and texture analysis. [ 1 ]