Search results
Results From The WOW.Com Content Network
Liouville's equation appears in the study of isothermal coordinates in differential geometry: the independent variables x,y are the coordinates, while f can be described as the conformal factor with respect to the flat metric. Occasionally it is the square f 2 that is referred to as the conformal factor, instead of f itself.
In physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of the central charge c {\displaystyle c} of its Virasoro symmetry algebra , but it is unitary only if
The quantum Liouville equation is the Weyl–Wigner transform of the von Neumann evolution equation for the density matrix in the Schrödinger representation. The quantum Hamilton equations are the Weyl–Wigner transforms of the evolution equations for operators of the canonical coordinates and momenta in the Heisenberg representation.
In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.
A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is ħ = h /2 π , also known as the reduced Planck constant or Dirac constant . Quantity (common name/s)
In mathematics, Liouville–Bratu–Gelfand equation or Liouville's equation is a non-linear Poisson equation, named after the mathematicians Joseph Liouville, [1] Gheorghe Bratu [2] and Israel Gelfand. [3] The equation reads + = The equation appears in thermal runaway as Frank-Kamenetskii theory, astrophysics for example, Emden–Chandrasekhar ...
In complex analysis, Liouville's theorem, named after Joseph Liouville (although the theorem was first proven by Cauchy in 1844 [1]), states that every bounded entire function must be constant. That is, every holomorphic function f {\displaystyle f} for which there exists a positive number M {\displaystyle M} such that | f ( z ) | ≤ M ...
Liouville's theorem has various meanings, all mathematical results named after Joseph Liouville: In complex analysis, see Liouville's theorem (complex analysis) There is also a related theorem on harmonic functions