Search results
Results From The WOW.Com Content Network
If the two angles of one pair are congruent (equal in measure), then the angles of each of the other pairs are also congruent. Proposition 1.27 of Euclid's Elements , a theorem of absolute geometry (hence valid in both hyperbolic and Euclidean Geometry ), proves that if the angles of a pair of alternate angles of a transversal are congruent ...
Such angles are called a linear pair of angles. [20] However, supplementary angles do not have to be on the same line and can be separated in space. For example, adjacent angles of a parallelogram are supplementary, and opposite angles of a cyclic quadrilateral (one whose vertices all fall on a single circle) are supplementary.
is the linear combination of vectors and such that = +. In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).
An exterior angle of a triangle is an angle that is a linear pair (and hence supplementary) to an interior angle. The measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it; this is the exterior angle theorem. [34]
In the branch of mathematics called functional analysis, a complemented subspace of a topological vector space, is a vector subspace for which there exists some other vector subspace of , called its (topological) complement in , such that is the direct sum in the category of topological vector spaces.
Suppose we have the linear program: Maximize c T x subject to Ax ≤ b, x ≥ 0. We would like to construct an upper bound on the solution. So we create a linear combination of the constraints, with positive coefficients, such that the coefficients of x in the constraints are at least c T. This linear combination gives us an upper bound on the ...
In 1990, Regan proposed the first known pairing function that is computable in linear time and with constant space (as the previously known examples can only be computed in linear time if multiplication can be too, which is doubtful). In fact, both this pairing function and its inverse can be computed with finite-state transducers that run in ...
In Euclidean geometry, linear separability is a property of two sets of points. This is most easily visualized in two dimensions (the Euclidean plane ) by thinking of one set of points as being colored blue and the other set of points as being colored red.