When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Correlation does not imply causation - Wikipedia

    en.wikipedia.org/wiki/Correlation_does_not_imply...

    Correlations must first be confirmed as real, and every possible causative relationship must then be systematically explored. In the end, correlation alone cannot be used as evidence for a cause-and-effect relationship between a treatment and benefit, a risk factor and a disease, or a social or economic factor and various outcomes.

  3. Uncorrelatedness (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Uncorrelatedness...

    In probability theory and statistics, two real-valued random variables, , , are said to be uncorrelated if their covariance, ⁡ [,] = ⁡ [] ⁡ [] ⁡ [], is zero.If two variables are uncorrelated, there is no linear relationship between them.

  4. Bivariate data - Wikipedia

    en.wikipedia.org/wiki/Bivariate_data

    Correlations between the two variables are determined as strong or weak correlations and are rated on a scale of –1 to 1, where 1 is a perfect direct correlation, –1 is a perfect inverse correlation, and 0 is no correlation. In the case of long legs and long strides, there would be a strong direct correlation. [6]

  5. Simpson's paradox - Wikipedia

    en.wikipedia.org/wiki/Simpson's_paradox

    Visualization of Simpson's paradox on data resembling real-world variability indicates that risk of misjudgment of true causal relationship can be hard to spot. Simpson's paradox is a phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined.

  6. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The correlation coefficient is +1 in the case of a perfect direct (increasing) linear relationship (correlation), −1 in the case of a perfect inverse (decreasing) linear relationship (anti-correlation), [5] and some value in the open interval (,) in all other cases, indicating the degree of linear dependence between the variables. As it ...

  7. Misconceptions about the normal distribution - Wikipedia

    en.wikipedia.org/wiki/Misconceptions_about_the...

    Students of statistics and probability theory sometimes develop misconceptions about the normal distribution, ideas that may seem plausible but are mathematically untrue. For example, it is sometimes mistakenly thought that two linearly uncorrelated, normally distributed random variables must be statistically independent.

  8. Lunar effect - Wikipedia

    en.wikipedia.org/wiki/Lunar_effect

    Moonrise by the Sea.Biologists as well as artists and poets have long thought about the Moon's influence on living creatures. The lunar effect is a purported correlation between specific stages of the roughly 29.5-day lunar cycle and behavior and physiological changes in living beings on Earth, including humans.

  9. Berkson's paradox - Wikipedia

    en.wikipedia.org/wiki/Berkson's_paradox

    An illustration of Berkson's Paradox. The top graph represents the actual distribution, in which a positive correlation between quality of burgers and fries is observed. However, an individual who does not eat at any location where both are bad observes only the distribution on the bottom graph, which appears to show a negative correlation.