Ad
related to: geodesy measurements in meters conversion
Search results
Results From The WOW.Com Content Network
Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems. In geodesy, geographic coordinate conversion is defined as translation among different coordinate formats or map projections all referenced to the same geodetic datum. [1]
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
The reverse conversion is harder: given X-Y-Z can immediately get longitude, but no closed formula for latitude and height exists. See "Geodetic system." Using Bowring's formula in 1976 Survey Review the first iteration gives latitude correct within 10-11 degree as long as the point is within 10,000 meters above or 5,000 meters below the ellipsoid.
The WGS 84 datum surface is an oblate spheroid with equatorial radius a = 6 378 137 m at the equator and flattening f = 1 ⁄ 298.257 223 563. The refined value of the WGS 84 gravitational constant (mass of Earth's atmosphere included) is GM = 3.986 004 418 × 10 14 m 3 /s 2. The angular velocity of the Earth is defined to be ω = 72.921 15 × ...
The conversion to meters uses Clarke's 1865 inch-meter ratio of 39.370432. The length of a foot or meter at the time ... As satellite geodesy and remote sensing ...
A geodetic datum or geodetic system (also: geodetic reference datum, geodetic reference system, or geodetic reference frame, or terrestrial reference frame) is a global datum reference or reference frame for unambiguously representing the position of locations on Earth by means of either geodetic coordinates (and related vertical coordinates) or geocentric coordinates. [1]
At 30° a longitudinal second is 26.76 m, at Greenwich (51°28′38″N) 19.22 m, and at 60° it is 15.42 m. On the WGS 84 spheroid, the length in meters of a degree of latitude at latitude ϕ (that is, the number of meters you would have to travel along a north–south line to move 1 degree in latitude, when at latitude ϕ ), is about
A planar approximation for the surface of the Earth may be useful over very small distances. It approximates the arc length, , to the tunnel distance, , or omits the conversion between arc and chord lengths shown below. The shortest distance between two points in plane is a Cartesian straight line.