When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    Any central rotation in three dimensions is uniquely determined by its axis of rotation (represented by a unit vector k → = (k x, k y, k z)) and the rotation angle φ.The Euler parameters for this rotation are calculated as follows:

  3. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so(3) to its Lie group SO(3).

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    To find the angle of a rotation, once the axis of the rotation is known, select a vector v perpendicular to the axis. Then the angle of the rotation is the angle between v and Rv. A more direct method, however, is to simply calculate the trace: the sum of the diagonal elements of the rotation

  5. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    Here α, β, γ are the direction cosines and the Cartesian coordinates of the unit vector | |, and a, b, c are the direction angles of the vector v. The direction angles a, b, c are acute or obtuse angles, i.e., 0 ≤ a ≤ π, 0 ≤ b ≤ π and 0 ≤ c ≤ π, and they denote the angles formed between v and the unit basis vectors e x, e y, e z.

  6. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The Rodrigues vector (sometimes called the Gibbs vector, with coordinates called Rodrigues parameters) [3] [4] can be expressed in terms of the axis and angle of the rotation as follows: = ^ ⁡ This representation is a higher-dimensional analog of the gnomonic projection , mapping unit quaternions from a 3-sphere onto the 3-dimensional pure ...

  7. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    Projections of Z vector Projections of Y vector. A common problem is to find the Euler angles of a given frame. The fastest way to get them is to write the three given vectors as columns of a matrix and compare it with the expression of the theoretical matrix (see later table of matrices). Hence the three Euler Angles can be calculated.

  8. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    which can be found by stacking into matrix form a set of equations consisting of the above difference equation and the k – 1 equations =, …, + = +, giving a k-dimensional system of the first order in the stacked variable vector [+] in terms of its once-lagged value, and taking the characteristic equation of this system's matrix.

  9. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A spatial rotation is a linear map in one-to-one correspondence with a 3 × 3 rotation matrix R that transforms a coordinate vector x into X, that is Rx = X. Therefore, another version of Euler's theorem is that for every rotation R , there is a nonzero vector n for which Rn = n ; this is exactly the claim that n is an eigenvector of R ...