Search results
Results From The WOW.Com Content Network
However, it is possible to formulate a version of the handshaking lemma using the concept of an end, an equivalence class of semi-infinite paths ("rays") considering two rays as equivalent when there exists a third ray that uses infinitely many vertices from each of them. The degree of an end is the maximum number of edge-disjoint rays that it ...
The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, which is to prove that in any group of people, the number of people who have shaken hands with an odd ...
In more colloquial terms, in a party of people some of whom shake hands, an even number of people must have shaken an odd number of other people's hands; for this reason, the result is known as the handshaking lemma. To prove this by double counting, let () be the degree of vertex . The number of vertex-edge incidences in the graph may be ...
Burnside's lemma also known as the Cauchy–Frobenius lemma; Frattini's lemma (finite groups) Goursat's lemma; Mautner's lemma (representation theory) Ping-pong lemma (geometric group theory) Schreier's subgroup lemma; Schur's lemma (representation theory) Zassenhaus lemma
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The problem was originally studied by the Chinese mathematician Meigu Guan in 1960, whose Chinese paper was translated into English in 1962. [4] The original name "Chinese postman problem" was coined in his honor; different sources credit the coinage either to Alan J. Goldman or Jack Edmonds , both of whom were at the U.S. National Bureau of ...
Nunberg believes his handshake is indicative of Trump's famous phrase, too. He told Huffington Post, "If we are talking about his handshake, it is kind of analogous to us talking about him when he ...
This is a list of notable theorems.Lists of theorems and similar statements include: List of algebras; List of algorithms; List of axioms; List of conjectures