Search results
Results From The WOW.Com Content Network
In graph theory, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. [ 1 ]
In more colloquial terms, in a party of people some of whom shake hands, an even number of people must have shaken an odd number of other people's hands; for this reason, the result is known as the handshaking lemma. To prove this by double counting, let () be the degree of vertex . The number of vertex-edge incidences in the graph may be ...
The formula implies that in any undirected graph, the number of vertices with odd degree is even. This statement (as well as the degree sum formula) is known as the handshaking lemma. The latter name comes from a popular mathematical problem, which is to prove that in any group of people, the number of people who have shaken hands with an odd ...
Burnside's lemma also known as the Cauchy–Frobenius lemma; Frattini's lemma (finite groups) Goursat's lemma; Mautner's lemma (representation theory) Ping-pong lemma (geometric group theory) Schreier's subgroup lemma; Schur's lemma (representation theory) Zassenhaus lemma
This is a list of notable theorems.Lists of theorems and similar statements include: List of algebras; List of algorithms; List of axioms; List of conjectures
Similarly, the hypergraph counting lemma is a generalization of the graph counting lemma that estimates number of copies of a fixed graph as a subgraph of a larger graph. There are several distinct formulations of the method, all of which imply the hypergraph removal lemma and a number of other powerful results, such as Szemerédi's theorem ...
Nunberg believes his handshake is indicative of Trump's famous phrase, too. He told Huffington Post, "If we are talking about his handshake, it is kind of analogous to us talking about him when he ...
The problem was originally studied by the Chinese mathematician Meigu Guan in 1960, whose Chinese paper was translated into English in 1962. [4] The original name "Chinese postman problem" was coined in his honor; different sources credit the coinage either to Alan J. Goldman or Jack Edmonds , both of whom were at the U.S. National Bureau of ...