Search results
Results From The WOW.Com Content Network
In optics, optical path length (OPL, denoted Λ in equations), also known as optical length or optical distance, is the length that light needs to travel through a vacuum to create the same phase difference as it would have when traveling through a given medium.
The next development in optical theory came ... where S 1 is the distance ... Other results from physical and geometrical optics apply to camera optics. For example, ...
Image distance in a spherical mirror + = () Subscripts 1 and 2 refer to initial and final optical media respectively. These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
Fermat's principle is most familiar, however, in the case of visible light: it is the link between geometrical optics, which describes certain optical phenomena in terms of rays, and the wave theory of light, which explains the same phenomena on the hypothesis that light consists of waves.
The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [1] [2] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors.
A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ | R 1 | and d ≪ | R 2 |).. In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces.
The rear focal length f ′ is the distance from the rear principal plane H ′ to the rear focal point F ′. Front focal distance (FFD) The front focal distance (FFD) (s F) is the distance from the front focal point of the system (F) to the vertex of the first optical surface (S 1). [1] [3] Some authors refer to this as "front focal length".
The geometrical optical-path length or simply geometrical path length (GPD) is the length of a segment in a given OP, i.e., the Euclidean distance integrated along a ray between any two points. [1] The mechanical length of an optical device can be reduced to less than the GPD by using folded optics .