Search results
Results From The WOW.Com Content Network
The Inhour equation used in nuclear reactor kinetics to relate reactivity and the reactor period. [1] Inhour is short for "inverse hour" and is defined as the reactivity which will make the stable reactor period equal to 1 hour (3,600 seconds). [2] Reactivity is more commonly expressed as per cent millie (pcm) of Δk/k or dollars. [3]
The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.
The fastest method for adjusting levels of fission-inducing neutrons in a reactor is via movement of the control rods. Control rods are made of so-called neutron poisons and therefore absorb neutrons. When a control rod is inserted deeper into the reactor, it absorbs more neutrons than the material it displaces – often the moderator.
A: So the reactor is fueled, the reactor is closed, bolted shut. Control rods are slowly being pulled out. The control rods absorb neutrons without undergoing any nuclear reactions.
k eff = 1, critical: the neutron density remains unchanged; and; k eff > 1, supercritical: the neutron density is increasing with time. In the case of a nuclear reactor, neutron flux and power density are proportional, hence during reactor start-up k eff > 1, during reactor operation k eff = 1 and k eff < 1 at reactor shutdown.
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
Reactions with neutrons are important in nuclear reactors and nuclear weapons. While the best-known neutron reactions are neutron scattering , neutron capture , and nuclear fission , for some light nuclei (especially odd-odd nuclei ) the most probable reaction with a thermal neutron is a transfer reaction:
Thus, by widening the margins of non-operation and supercriticality and allowing more time to regulate the reactor, the delayed neutrons are essential to inherent reactor safety, even in reactors requiring active control. The lower percentage [3] of delayed neutrons makes the use of large percentages of plutonium in nuclear reactors more ...