Search results
Results From The WOW.Com Content Network
The Christoffel symbol does not transform as a tensor, but rather as an object in the jet bundle. More precisely, the Christoffel symbols can be considered as functions on the jet bundle of the frame bundle of M , independent of any local coordinate system.
Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by
The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.
On an n-dimensional Riemannian manifold, the geodesic equation written in a coordinate chart with coordinates is: + = where the coordinates x a (s) are regarded as the coordinates of a curve γ(s) in and are the Christoffel symbols.
The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor .
the Christoffel symbols that describe components of a metric connection; the stack alphabet in the formal definition of a pushdown automaton, or the tape-alphabet in the formal definition of a Turing machine; the Feferman–Schütte ordinal Γ 0; represents: the specific weight of substances; the lower incomplete gamma function
In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold , one can additionally arrange that the metric tensor is the Kronecker delta at the point p , and that the first ...
4 Calculating the Christoffel symbols. 5 Using the field equations to find A(r) and B(r) 6 Using the weak-field approximation to find K and S.