When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  3. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The above identities concerning the determinant of products and inverses of matrices imply that similar matrices have the same determinant: two matrices A and B are similar, if there exists an invertible matrix X such that A = X −1 BX. Indeed, repeatedly applying the above identities yields

  4. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    If a 2 x 2 real matrix has zero trace, its square is a diagonal matrix. The trace of a 2 × 2 complex matrix is used to classify Möbius transformations. First, the matrix is normalized to make its determinant equal to one. Then, if the square of the trace is 4, the corresponding transformation is parabolic.

  5. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.

  6. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    The direct sum of matrices is a special type of block matrix. In particular, the direct sum of square matrices is a block diagonal matrix. The adjacency matrix of the union of disjoint graphs (or multigraphs) is the direct sum of their adjacency matrices. Any element in the direct sum of two vector spaces of matrices can be represented as a ...

  7. Cauchy–Binet formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Binet_formula

    In mathematics, specifically linear algebra, the Cauchy–Binet formula, named after Augustin-Louis Cauchy and Jacques Philippe Marie Binet, is an identity for the determinant of the product of two rectangular matrices of transpose shapes (so that the product is well-defined and square). It generalizes the statement that the determinant of a ...

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The sum A + B of two m×n matrices A and B is calculated entrywise: ... every orthogonal matrix with determinant +1 is a pure rotation without reflection, ...

  9. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    However, operations mixing upper and lower triangular matrices do not in general produce triangular matrices. For instance, the sum of an upper and a lower triangular matrix can be any matrix; the product of a lower triangular with an upper triangular matrix is not necessarily triangular either. The set of unitriangular matrices forms a Lie group.