Search results
Results From The WOW.Com Content Network
A multigraph with multiple edges (red) and several loops (blue). Not all authors allow multigraphs to have loops. In mathematics, and more specifically in graph theory, a multigraph is a graph which is permitted to have multiple edges (also called parallel edges [1]), that is, edges that have the same end nodes.
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).
A multiple adjacency or multiple edge is a set of more than one edge that all have the same endpoints (in the same direction, in the case of directed graphs). A graph with multiple edges is often called a multigraph. multiplicity The multiplicity of an edge is the number of edges in a multiple adjacency.
Multiple edges joining two vertices. In graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex and the same head vertex. A simple graph has no multiple edges and ...
One definition of an oriented graph is that it is a directed graph in which at most one of (x, y) and (y, x) may be edges of the graph. That is, it is a directed graph that can be formed as an orientation of an undirected (simple) graph. Some authors use "oriented graph" to mean the same as "directed graph".
In mathematics education, a representation is a way of encoding an idea or a relationship, and can be both internal (e.g., mental construct) and external (e.g., graph). Thus multiple representations are ways to symbolize, to describe and to refer to the same mathematical entity. They are used to understand, to develop, and to communicate ...
The graphs can be used together to determine the economic equilibrium (essentially, to solve an equation). Simple graph used for reading values: the bell-shaped normal or Gaussian probability distribution, from which, for example, the probability of a man's height being in a specified range can be derived, given data for the adult male population.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.