When.com Web Search

  1. Ad

    related to: transfer learning vs fine tuning techniques pdf file download for windows 10

Search results

  1. Results From The WOW.Com Content Network
  2. Fine-tuning (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Fine-tuning_(deep_learning)

    In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]

  3. Transfer learning - Wikipedia

    en.wikipedia.org/wiki/Transfer_learning

    Transfer learning (TL) is a technique in machine learning (ML) in which knowledge learned from a task is re-used in order to boost performance on a related task. [1] For example, for image classification , knowledge gained while learning to recognize cars could be applied when trying to recognize trucks.

  4. Domain adaptation - Wikipedia

    en.wikipedia.org/wiki/Domain_Adaptation

    Domain adaptation is a specialized area within transfer learning. In domain adaptation, the source and target domains share the same feature space but differ in their data distributions. In contrast, transfer learning encompasses broader scenarios, including cases where the target domain’s feature space differs from that of the source domain(s).

  5. Knowledge distillation - Wikipedia

    en.wikipedia.org/wiki/Knowledge_distillation

    In machine learning, knowledge distillation or model distillation is the process of transferring knowledge from a large model to a smaller one. While large models (such as very deep neural networks or ensembles of many models) have more knowledge capacity than small models, this capacity might not be fully utilized.

  6. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    Feature learning is intended to result in faster training or better performance in task-specific settings than if the data was input directly (compare transfer learning). [ 1 ] In machine learning (ML), feature learning or representation learning [ 2 ] is a set of techniques that allow a system to automatically discover the representations ...

  7. Transduction (machine learning) - Wikipedia

    en.wikipedia.org/.../Transduction_(machine_learning)

    The most well-known example of a case-bases learning algorithm is the k-nearest neighbor algorithm, which is related to transductive learning algorithms. [2] Another example of an algorithm in this category is the Transductive Support Vector Machine (TSVM).

  8. Multi-task learning - Wikipedia

    en.wikipedia.org/wiki/Multi-task_learning

    Multi-task learning (MTL) is a subfield of machine learning in which multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models, when compared to training the models separately.

  9. Fine-tuning - Wikipedia

    en.wikipedia.org/wiki/Fine-tuning

    Download as PDF; Printable version; ... move to sidebar hide. Fine-tuning may refer to: Fine-tuning (deep learning) Fine-tuning (physics) Fine-tuned universe ...