When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tension (physics) - Wikipedia

    en.wikipedia.org/wiki/Tension_(physics)

    The system has a constant velocity and is therefore in equilibrium because the tension in the string, which is pulling up on the object, is equal to the weight force, mg ("m" is mass, "g" is the acceleration caused by the gravity of Earth), which is pulling down on the object.

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    [23]: 58 When the net force on a body is equal to zero, then by Newton's second law, the body does not accelerate, and it is said to be in mechanical equilibrium. A state of mechanical equilibrium is stable if, when the position of the body is changed slightly, the body remains near that equilibrium. Otherwise, the equilibrium is unstable.

  4. Mersenne's laws - Wikipedia

    en.wikipedia.org/wiki/Mersenne's_laws

    If the tension on a string is ten lbs., it must be increased to 40 lbs. for a pitch an octave higher. [1] A string, tied at A , is kept in tension by W , a suspended weight, and two bridges, B and the movable bridge C , while D is a freely moving wheel; all allowing one to demonstrate Mersenne's laws regarding tension and length [ 1 ]

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    In all cases, the body is assumed to start from rest, and air resistance is neglected. Generally, in Earth's atmosphere, all results below will therefore be quite inaccurate after only 5 seconds of fall (at which time an object's velocity will be a little less than the vacuum value of 49 m/s (9.8 m/s 2 × 5 s) due to air resistance).

  6. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    To make this into an equal-sided formula or equation, there needed to be a multiplying factor or constant that would give the correct force of gravity no matter the value of the masses or distance between them (the gravitational constant). Newton would need an accurate measure of this constant to prove his inverse-square law.

  7. The fall equinox is here. What does that mean? - AOL

    www.aol.com/news/fall-equinox-does-mean...

    The equinox arrives on Saturday, marking the start of the fall season for the Northern Hemisphere. Here's what to know about how we split up the year using the Earth's orbit. As the Earth travels ...

  8. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    The data is in good agreement with the predicted fall time of /, where h is the height and g is the free-fall acceleration due to gravity. Near the surface of the Earth, an object in free fall in a vacuum will accelerate at approximately 9.8 m/s 2 , independent of its mass .

  9. String vibration - Wikipedia

    en.wikipedia.org/wiki/String_vibration

    The speed of propagation of a wave is equal to the wavelength divided by the period, or multiplied by the frequency: v = λ τ = λ f . {\displaystyle v={\frac {\lambda }{\tau }}=\lambda f.} If the length of the string is L {\displaystyle L} , the fundamental harmonic is the one produced by the vibration whose nodes are the two ends of the ...