Ad
related to: taylor series application example math
Search results
Results From The WOW.Com Content Network
Taylor series are used to define functions and "operators" in diverse areas of mathematics. In particular, this is true in areas where the classical definitions of functions break down. For example, using Taylor series, one may extend analytic functions to sets of matrices and operators, such as the matrix exponential or matrix logarithm.
The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
Typical examples of analytic functions are The following elementary functions: All polynomials: if a polynomial has degree n, any terms of degree larger than n in its Taylor series expansion must immediately vanish to 0, and so this series will be trivially convergent. Furthermore, every polynomial is its own Maclaurin series.
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size.. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations.
so that the radius of convergence of the Taylor series of > at is 0 by the Cauchy-Hadamard formula. Since the set of analyticity of a function is an open set, and since dyadic rationals are dense , we conclude that F > q {\displaystyle F_{>q}} , and hence F {\displaystyle F} , is nowhere analytic in R {\displaystyle \mathbb {R} } .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.