Ad
related to: optical rotation vs rotational polarization test for adults
Search results
Results From The WOW.Com Content Network
Optical activity is reciprocal, i.e. it is the same for opposite directions of wave propagation through an optically active medium, for example, clockwise polarization rotation from the point of view of an observer.
Recording optical rotation with a polarimeter: The plane of polarisation of plane polarised light (4) rotates (6) as it passes through an optically active sample (5). This angle is determined with a rotatable polarizing filter (7). In chemistry, specific rotation ([α]) is a property of a chiral chemical compound.
In all materials the rotation varies with wavelength. The variation is caused by two quite different phenomena. The first accounts in most cases for the majority of the variation in rotation and should not strictly be termed rotatory dispersion. It depends on the fact that optical activity is actually circular birefringence.
A polarimeter [1] is a scientific instrument used to measure optical rotation: the angle of rotation caused by passing linearly polarized light through an optically active substance. [ 2 ] Some chemical substances are optically active, and linearly polarized (uni-directional) light will rotate either to the left (counter-clockwise) or right ...
A broadband prismatic rotator rotates the linear polarization by 90° using seven internal reflections to induce collinear rotation, as shown in the diagram. [2] The polarization is rotated in the second reflection, but that leaves the beam in a different plane and at a right angle relative to the incident beam.
The angle of rotation is then read from a scale. The same phenomenon is observed after an angle of 180°. The specific rotation of the sample may then be calculated. Temperature can affect the rotation of light, which should be accounted for in the calculations. [] = / where:
Polarized light microscopy can mean any of a number of optical microscopy techniques involving polarized light. Simple techniques include illumination of the sample with polarized light. Directly transmitted light can, optionally, be blocked with a polariser oriented at 90 degrees to the illumination.
Mueller calculus is a matrix method for manipulating Stokes vectors, which represent the polarization of light. It was developed in 1943 by Hans Mueller. In this technique, the effect of a particular optical element is represented by a Mueller matrix—a 4×4 matrix that is an overlapping generalization of the Jones matrix.