Ad
related to: pcl5 bonds
Search results
Results From The WOW.Com Content Network
The reaction of phosphorus pentoxide and PCl 5 produces POCl 3 : [18] [page needed] 6 PCl 5 + P 4 O 10 → 10 POCl 3. PCl 5 chlorinates nitrogen dioxide to form unstable nitryl chloride: PCl 5 + 2 NO 2 → PCl 3 + 2 NO 2 Cl 2 NO 2 Cl → 2 NO 2 + Cl 2. PCl 5 is a precursor for lithium hexafluorophosphate, LiPF 6.
Relative bond strengths in pentacoordinated silicon compounds. In A, the Si-O bond length is 1.749Å and the Si-I bond length is 3.734Å; in B, the Si-O bond lengthens to 1.800Å and the Si-Br bond shortens to 3.122Å, and in C, the Si-O bond is the longest at 1.954Å and the Si-Cl bond the shortest at 2.307A. [28]
Thus, the LDQ structure for PCl 5 consists of three two-centre two-electron bonds and two two-centre one-electron bonds, thus satisfying the octet rule and dispensing with the need to invoke hypervalent bonding. This LDQ structure is also in good agreement with quantum chemical calculations.
This is unlike phosphorus pentachloride which exists as neutral PCl 5 molecules in the gas and liquid states but adopts the ionic form [PCl 4] + [PCl 6] − (tetrachlorophosphonium hexachlorophosphate(V)) in the solid state. The average bond lengths in the crystal structure of POCl 3 are 1.98 Å for P–Cl and 1.46 Å for P=O. [5]
In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. [1] This is one geometry for which the bond angles surrounding the central atom are not identical (see also pentagonal bipyramid), because there is no geometrical arrangement with five terminal atoms in equivalent positions.
The 3-center 4-electron (3c–4e) bond is a model used to explain bonding in certain hypervalent molecules such as tetratomic and hexatomic interhalogen compounds, sulfur tetrafluoride, the xenon fluorides, and the bifluoride ion.
Phosphorus pentachloride, phosphorus pentabromide, and phosphorus heptabromide are ionic in the solid and liquid states; PCl 5 is formulated as PCl 4 + PCl 6 –, but in contrast, PBr 5 is formulated as PBr 4 + Br −, and PBr 7 is formulated as PBr 4 + Br 3 −. They are widely used as chlorinating and brominating agents in organic chemistry.
In some molecules, there is a difference between valence and oxidation state for a given atom. For example, in disulfur decafluoride molecule S 2 F 10, each sulfur atom has 6 valence bonds (5 single bonds with fluorine atoms and 1 single bond with the other sulfur atom). Thus, each sulfur atom is hexavalent or has valence 6, but has oxidation ...