When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The steady-state heat equation for a volume that contains a heat source (the inhomogeneous case), is the Poisson's equation: − k ∇ 2 u = q {\displaystyle -k\nabla ^{2}u=q} where u is the temperature , k is the thermal conductivity and q is the rate of heat generation per unit volume.

  3. Heisler chart - Wikipedia

    en.wikipedia.org/wiki/Heisler_Chart

    These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [⁡ + ⁡ ⁡], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.

  4. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout.

  5. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    It quantifies how effectively a material can resist the transfer of heat through conduction, convection, and radiation. It has the units square metre kelvins per watt (m 2 ⋅K/W) in SI units or square foot degree Fahrenheit–hours per British thermal unit (ft 2 ⋅°F⋅h/Btu) in imperial units. The higher the thermal insulance, the better a ...

  6. Thermal contact conductance - Wikipedia

    en.wikipedia.org/wiki/Thermal_contact_conductance

    Thermal contact resistance is significant and may dominate for good heat conductors such as metals but can be neglected for poor heat conductors such as insulators. [2] Thermal contact conductance is an important factor in a variety of applications, largely because many physical systems contain a mechanical combination of two materials.

  7. Thermal conductivity measurement - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity...

    Non-steady-state methods to measure the thermal conductivity do not require the signal to obtain a constant value. Instead, the signal is studied as a function of time. The advantage of these methods is that they can in general be performed more quickly, since there is no need to wait for a steady-state situation.

  8. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.

  9. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    An example of steady state conduction is the heat flow through walls of a warm house on a cold day—inside the house is maintained at a high temperature and, outside, the temperature stays low, so the transfer of heat per unit time stays near a constant rate determined by the insulation in the wall and the spatial distribution of temperature ...