Search results
Results From The WOW.Com Content Network
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
The molar mass is defined as the mass of a given substance divided by the amount of the substance, and is expressed in grams per mol (g/mol). That makes the molar mass an average of many particles or molecules (potentially containing different isotopes), and the molecular mass the mass of one specific particle or molecule. The molar mass is ...
For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant. The law is named after Amedeo Avogadro who, in 1812, [ 2 ] [ 3 ] hypothesized that two given samples of an ideal gas, of the same volume and at the same temperature and pressure, contain the same ...
M 2 is the molar mass of gas 2. Graham's law states that the rate of diffusion or of effusion of a gas is inversely proportional to the square root of its molecular weight. Thus, if the molecular weight of one gas is four times that of another, it would diffuse through a porous plug or escape through a small pinhole in a vessel at half the rate ...
The number average molar mass is a way of determining the molecular mass of a polymer.Polymer molecules, even ones of the same type, come in different sizes (chain lengths, for linear polymers), so the average molecular mass will depend on the method of averaging.
Air is given a vapour density of one. For this use, air has a molecular weight of 28.97 atomic mass units, and all other gas and vapour molecular weights are divided by this number to derive their vapour density. [2] For example, acetone has a vapour density of 2 [3] in relation to air. That means acetone vapour is twice as heavy as air.
The molar mass constant, usually denoted by M u, is a physical constant defined as one twelfth of the molar mass of carbon-12: M u = M(12 C)/12. [1] The molar mass of an element or compound is its relative atomic mass (atomic weight) or relative molecular mass (molecular weight or formula weight) multiplied by the molar mass constant.
List of orders of magnitude for molar concentration; Factor (Molarity) SI prefix Value Item 10 −24: yM 1.66 yM: 1 elementary entity per litre [1]: 8.5 yM: airborne bacteria in the upper troposphere (5100/m 3) [2]