Search results
Results From The WOW.Com Content Network
For example, coding theory makes use of matrices over finite fields. Wherever eigenvalues are considered, as these are roots of a polynomial they may exist only in a larger field than that of the entries of the matrix; for instance, they may be complex in the case of a matrix with real entries. The possibility to reinterpret the entries of a ...
This includes the use of matrices and vectors to represent and manipulate fluid flow fields. Furthermore, linear algebra plays a crucial role in thermal energy systems, particularly in power systems analysis. It is used to model and optimize the generation, transmission, and distribution of electric power.
Several important classes of matrices are subsets of each other. This article lists some important classes of matrices used in mathematics, science and engineering. A matrix (plural matrices, or less commonly matrixes) is a rectangular array of numbers called entries. Matrices have a long history of both study and application, leading to ...
Charles-François Sturm elaborated on Fourier's ideas further, and brought them to the attention of Cauchy, who combined them with his own ideas and arrived at the fact that real symmetric matrices have real eigenvalues. [11] This was extended by Charles Hermite in 1855 to what are now called Hermitian matrices. [13]
Specifically, if the eigenvalues all have real parts that are negative, then the system is stable near the stationary point. If any eigenvalue has a real part that is positive, then the point is unstable. If the largest real part of the eigenvalues is zero, the Jacobian matrix does not allow for an evaluation of the stability. [12]
Any real symplectic matrix can be decomposed as a product of three matrices: = ′, where and ′ are both symplectic and orthogonal, and is positive-definite and diagonal. [6] This decomposition is closely related to the singular value decomposition of a matrix and is known as an 'Euler' or 'Bloch-Messiah' decomposition.
An circulant matrix takes the form = [] or the transpose of this form (by choice of notation). If each is a square matrix, then the matrix is called a block-circulant matrix.. A circulant matrix is fully specified by one vector, , which appears as the first column (or row) of .
Let be an real matrix, i.e. a matrix with rows and columns. Given a p × q {\displaystyle p\times q} matrix B {\displaystyle B} , we can form the matrix multiplication B A {\displaystyle BA} or B ∘ A {\displaystyle B\circ A} only when q = n {\displaystyle q=n} , and in that case the resulting matrix is of dimension p × m {\displaystyle p ...