Search results
Results From The WOW.Com Content Network
For example, coding theory makes use of matrices over finite fields. Wherever eigenvalues are considered, as these are roots of a polynomial they may exist only in a larger field than that of the entries of the matrix; for instance, they may be complex in the case of a matrix with real entries. The possibility to reinterpret the entries of a ...
Several important classes of matrices are subsets of each other. This article lists some important classes of matrices used in mathematics, science and engineering. A matrix (plural matrices, or less commonly matrixes) is a rectangular array of numbers called entries. Matrices have a long history of both study and application, leading to ...
This includes the use of matrices and vectors to represent and manipulate fluid flow fields. Furthermore, linear algebra plays a crucial role in thermal energy systems, particularly in power systems analysis. It is used to model and optimize the generation, transmission, and distribution of electric power.
A doubly stochastic matrix is a square matrix of nonnegative real numbers with each row and column summing to 1. A substochastic matrix is a real square matrix whose row sums are all ; In the same vein, one may define a probability vector as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right ...
The next type of row operation on a matrix A multiplies all elements on row i by m where m is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the i th position, where it is m .
This article will use the following notational conventions: matrices are represented by capital letters in bold, e.g. A; vectors in lowercase bold, e.g. a; and entries of vectors and matrices are italic (they are numbers from a field), e.g.
In the 2×2 case (n=1), M will be the product of a real symplectic matrix and a complex number of absolute value 1. Other authors [ 7 ] retain the definition ( 1 ) for complex matrices and call matrices satisfying ( 3 ) conjugate symplectic .
Let F m×n denote the set of m×n matrices with entries in F. Then F m×n is a vector space over F. Vector addition is just matrix addition and scalar multiplication is defined in the obvious way (by multiplying each entry by the same scalar). The zero vector is just the zero matrix. The dimension of F m×n is mn. One possible choice of basis ...