Ads
related to: increasing and decreasing functions formula calculator free
Search results
Results From The WOW.Com Content Network
A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...
The first-derivative test depends on the "increasing–decreasing test", which is itself ultimately a consequence of the mean value theorem. It is a direct consequence of the way the derivative is defined and its connection to decrease and increase of a function locally, combined with the previous section.
There is also a connection formula for the ratio of two rising factorials given by () = (+) (),. Additionally, we can expand generalized exponent laws and negative rising and falling powers through the following identities: [11] (p 52)
A function is unimodal if it is monotonically increasing up to some point (the mode) and then monotonically decreasing. When f {\displaystyle f} is a strictly monotonic function, then f {\displaystyle f} is injective on its domain, and if T {\displaystyle T} is the range of f {\displaystyle f} , then there is an inverse function on T ...
Sigmoid functions have domain of all real numbers, with return (response) value commonly monotonically increasing but could be decreasing. Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1.
In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non-negative pointwise-increasing measurable functions (), taking the integral and the supremum can be interchanged with the result being finite if either one is ...
A differentiable function f is (strictly) concave on an interval if and only if its derivative function f ′ is (strictly) monotonically decreasing on that interval, that is, a concave function has a non-increasing (decreasing) slope. [3] [4] Points where concavity changes (between concave and convex) are inflection points. [5]
Assume that () is a strictly monotone and divergent sequence (i.e. strictly increasing and approaching +, or strictly decreasing and approaching ) and the following limit exists: lim n → ∞ a n + 1 − a n b n + 1 − b n = l .