Search results
Results From The WOW.Com Content Network
The void pointer, or void*, is supported in ANSI C and C++ as a generic pointer type. A pointer to void can store the address of any object (not function), [a] and, in C, is implicitly converted to any other object pointer type on assignment, but it must be explicitly cast if dereferenced.
Although function pointers in C and C++ can be implemented as simple addresses, so that typically sizeof(Fx)==sizeof(void *), member pointers in C++ are sometimes implemented as "fat pointers", typically two or three times the size of a simple function pointer, in order to deal with virtual methods and virtual inheritance [citation needed].
Concurrent Building Blocks - C++ implementation of Hazard Pointer (called "SMR") and other lock-free data structures. Also has Java interfaces. Concurrency Kit Archived 2014-06-01 at the Wayback Machine - C implementation of Hazard Pointer and lock-free data structures; Atomic Ptr Plus - C/C++ library that has a Hazard Pointer implementation
Smart pointers typically keep track of the memory they point to, and may also be used to manage other resources, such as network connections and file handles. Smart pointers were first popularized in the programming language C++ during the first half of the 1990s as rebuttal to criticisms of C++'s lack of automatic garbage collection. [1] [2]
In computer science, pointer analysis, or points-to analysis, is a static code analysis technique that establishes which pointers, or heap references, can point to which variables, or storage locations. It is often a component of more complex analyses such as escape analysis. A closely related technique is shape analysis.
The Boost C++ library provides strong and weak references. It is a mistake to use regular C++ pointers as the weak counterparts of smart pointers because such usage removes the ability to detect when the strong reference count has gone to 0 and the object has been deleted. Worse yet, it does not allow for detection of whether another strong ...
The d-pointer pattern is one of the implementations of the opaque pointer. It is commonly used in C++ classes due to its advantages (noted below). A d-pointer is a private data member of the class that points to an instance of a structure. This method allows class declarations to omit private data members, except for the d-pointer itself. [6]
To expose dangling pointer errors, one common programming technique is to set pointers to the null pointer or to an invalid address once the storage they point to has been released. When the null pointer is dereferenced (in most languages) the program will immediately terminate—there is no potential for data corruption or unpredictable behavior.