Search results
Results From The WOW.Com Content Network
The ReAct pattern, a portmanteau of "Reason + Act", constructs an agent out of an LLM, using the LLM as a planner. The LLM is prompted to "think out loud". The LLM is prompted to "think out loud". Specifically, the language model is prompted with a textual description of the environment, a goal, a list of possible actions, and a record of the ...
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [ 3 ] [ 4 ] [ 5 ] GPT-2 was created as a "direct scale-up" of GPT-1 [ 6 ] with a ten-fold increase in both its parameter count and the size of its training dataset. [ 5 ]
The Stable Diffusion model supports the ability to generate new images from scratch through the use of a text prompt describing elements to be included or omitted from the output. [8] Existing images can be re-drawn by the model to incorporate new elements described by a text prompt (a process known as "guided image synthesis" [ 49 ] ) through ...
The format focuses on supporting different quantization types, which can reduce memory usage, and increase speed at the expense of lower model precision. [ 63 ] llamafile created by Justine Tunney is an open-source tool that bundles llama.cpp with the model into a single executable file.
The original BERT paper published results demonstrating that a small amount of finetuning (for BERT LARGE, 1 hour on 1 Cloud TPU) allowed it to achieved state-of-the-art performance on a number of natural language understanding tasks: [1] GLUE (General Language Understanding Evaluation) task set (consisting of 9 tasks);
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [3]